Electronic, magnetic, and transport properties of the isotypic aluminides SmT2Al10 (T = Fe, Ru)

Show simple item record

dc.contributor.author Peratheepan, P.
dc.contributor.author Strydom, A. M.
dc.date.accessioned 2019-08-11T04:01:47Z
dc.date.available 2019-08-11T04:01:47Z
dc.date.issued 2015
dc.identifier.uri http://www.digital.lib.esn.ac.lk/handle/123456789/3965
dc.description.abstract We report the results of a comprehensive physical and magnetic property study of the new isotypic aluminides SmT2Al10 (T = Fe, Ru). These two compounds are members of a rare-earth based system which has become an exemplary case study of the interplay of magnetism and correlated electron phenomena. SmFe2Al10 and SmRu2Al10 are found to order in a putative antiferromagnetic spin arrangement at TN = 14.5 K and 12.5 K, respectively. Moreover, SmRu2Al10 shows a further phase transition at TSR = 5 K which is likely due to spin reorientation. The susceptibility of SmFe2Al10 points to a valence instability of the Sm ionic state at intermediate temperatures well above TN. Electronic and thermal transport confirm that SmFe2Al10 undergoes an antiferromagnetic superzone gap formation below TN, whereas SmRu2Al10 suffers a lattice anomaly driven magnetoelastic coupling at TN. Below TN, the physical properties of SmT2Al10 (T = Fe, Ru) are governed by magnons with an antiferromagnetic spin-wave spectrum that reveals spin-gap opening. Our findings in this work have exposed a new anomalous correlated compound in the RT2Al10 series. SmFe2Al10 has a magnetic ordered ground state in spite of an unstable valence at higher temperature. This is comparable with CeRu2Al10, which is a unique and controversial Kondo insulator that orders antiferromagnetic at TN = 27 K. Among the series of rare-earth RT2Al10 compounds, the presented Sm compounds are two new members with anomalously high magnetic ordering temperatures, and it is envisaged that together with the two very well studied compounds CeRu2Al10 and CeOs2Al10 our presented studies will enable a broader approach towards understanding the fascinating properties of this materials class. DOI: https://iopscience.iop.org/article/10.1088/0953-8984/27/9/095604 en_US
dc.language.iso en en_US
dc.publisher Journal of Physics en_US
dc.title Electronic, magnetic, and transport properties of the isotypic aluminides SmT2Al10 (T = Fe, Ru) en_US
dc.type Article en_US
dc.identifier.sslno 03 en_US
dc.identifier.doi https://iopscience.iop.org/article/10.1088/0953-8984/27/9/095604 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account